Cross-Domain Collaborative Filtering with Factorization Machines
نویسندگان
چکیده
Factorization machines offer an advantage over other existing collaborative filtering approaches to recommendation. They make it possible to work with any auxiliary information that can be encoded as a real-valued feature vector as a supplement to the information in the user-item matrix. We build on the assumption that different patterns characterize the way that users interact with (i.e., rate or download) items of a certain type (e.g., movies or books). We view interactions with a specific type of item as constituting a particular domain and allow interaction information from an auxiliary domain to inform recommendation in a target domain. Our proposed approach is tested on a data set from Amazon and compared with a state-of-the-art approach that has been proposed for Cross-Domain Collaborative Filtering. Experimental results demonstrate that our approach, which has a lower computational complexity, is able to achieve performance improvements.
منابع مشابه
Optimizing Factorization Machines for Top-N Context-Aware Recommendations
Context-aware Collaborative Filtering (CF) techniques such as Factorization Machines (FM) have been proven to yield high precision for rating prediction. However, the goal of recommender systems is often referred to as a top-N item recommendation task, and item ranking is a better formulation for the recommendation problem. In this paper, we present two collaborative rankers, namely, Ranking Fa...
متن کاملExploiting Social Tags in Matrix Factorization Models for Cross-domain Collaborative Filtering
Cross-domain recommender systems aim to generate or enhance personalized recommendations in a target domain by exploiting knowledge (mainly user preferences) from other source domains. Due to the heterogeneity of item characteristics across domains, content-based recommendation methods are difficult to apply, and collaborative filtering has become the most popular approach to cross-domain recom...
متن کاملfastFM: A Library for Factorization Machines
Factorization Machines (FM) are currently only used in a narrow range of applications and are not yet part of the standard machine learning toolbox, despite their great success in collaborative filtering and click-through rate prediction. However, Factorization Machines are a general model to deal with sparse and high dimensional features. Our Factorization Machine implementation (fastFM) provi...
متن کاملCCCFNet: A Content-Boosted Collaborative Filtering Neural Network for Cross Domain Recommender Systems
To overcome data sparsity problem, we propose a cross domain recommendation system named CCCFNet which can combine collaborative filtering and content-based filtering in a unified framework. We first introduce a factorization framework to tie CF and content-based filtering together. Then we find that the MAP estimation of this framework can be embedded into a multi-view neural network. Through ...
متن کاملRecommendation with the Right Slice: Speeding Up Collaborative Filtering with Factorization Machines
We propose an alternative way to efficiently exploit rating data for collaborative filtering with Factorization Machines (FMs). Our approach partitions user-item matrix into ‘slices’ which are mutually exclusive with respect to items. The training phase makes direct use of the slice of interest (target slice), while incorporating information from other slices indirectly. FMs represent user-item...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014